

Cloud Computing Summit Mordechai Butrashvily, CEO <u>moti@hoopoe-cloud.com</u>

Agenda

- Introduction to GPU Computing
- Future GPU architecture
- GPU on a Cloud:
 - Visualization
 - Computing
- Summary

About Us

- Former members of IMOD
- Head of GPGPU working group @ IGT
- Developing industrial GPGPU solutions
- Formed in 2008, after years of experience
- Large experience with graphics, HPC and distributed systems/programming

What is a GPU?

 Graphics Processing Unit – previously served for graphic transformations

• Features:

Computing Power:	Up to 2+ TFLOPS	
Dedicated Memory:	Up to 6 GB	
Cores	Up to 1600	
Memory bandwidth:	Up to 250 GB/s	

- Vendors: Intel, AMD, NVIDIA
- Actually, a GPU is like a small GRID/Cluster

What is a GPU?

- Vendor DRAM
- Actually, a GPU is like a small GRID/Cluster

A GPU core at glance

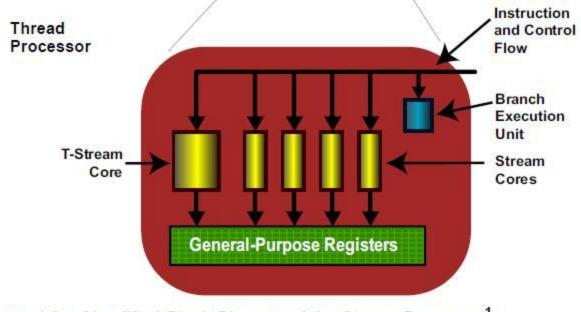
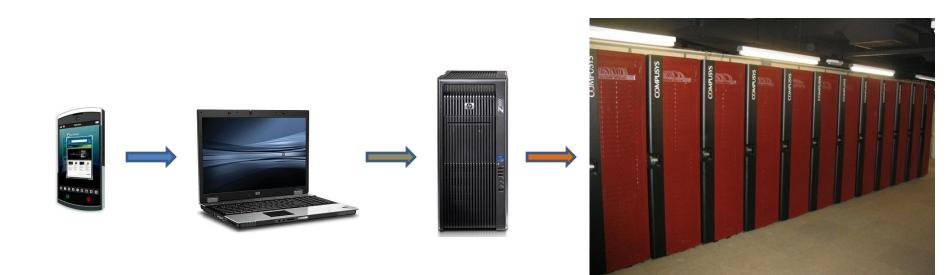


Figure 1.9 Simplified Block Diagram of the Stream Processor¹



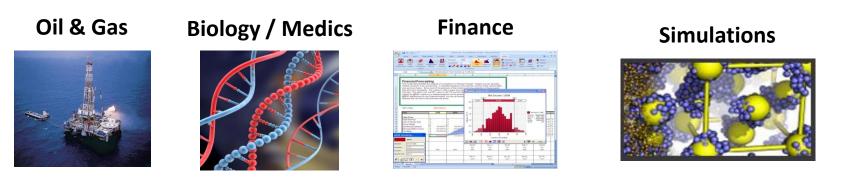
GPU Features

- GPU = Co-processor
- CPU compatible arithmetic operations
- Single/double precision, integer operations
- Integrates with C/C++, .NET, FORTRAN, Java, Python, Ruby and more
- OS support (32/64 bit):
 - Windows
 - Linux
- Especially good for distributed algorithms, but not just
- Can do FFT, BLAS, LAPACK, OpenCV and more

Maps to Every Scale

Software Environments

- CUDA
 - C based language, supports C++



- Targeting NVIDIA products
- Windows / Linux / Mac support
- OpenCL
 - Emerging standard
 - Supported across vendors
 - Heterogeneous programming (CPU + GPU + DSP...)
 - Windows / Linux / Mac support

GPU Computing

- Using graphics processors for general tasks
- **Successful** in many applications:

• Provides strong computing power

Future GPU architecture

• NVIDIA "Fermi" (Additional presentation)

GPU on a Cloud

- Cloud services are based on virtualization
- Achieving better resource usage
- The GPU is not yet virtualized
- Other solutions exist solving large domain problems:
 - Visualization RealityServer[®] by mental-images[®]
 - **Computing** Hoopoe[™] GPU Cloud Computing

GPU Visualization Cloud

- mental-images RealityServer[®]
- Share design workbench with colleagues
- Perform photorealistic simulations
- (Additional Presentation)

A milestone in cloud systems & (super)computing

Agenda

- GPU Performance
- Introduction
- Motivation
- Services
- Virtualization / Security
- Examples
- Summary

GPU Performance

• 1 GPU hour = (~)

Computation	Amount (hr)	Details
FFT 2D	36,000,000	128x128 transform
Image Erode	10,800,000	1280x1024 pixels
Image smooth (Gaussian)	3,600,000	1280x1024 pixels
Black & Scholes (option pricing)	1,080,000,000	Derivative options

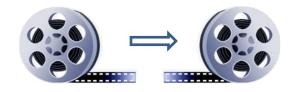
- Named after "Dukhifat", the official bird of Israel for the 60 years celebrations
- A computational "cloud", also for GPUs
- Bringing the power of thousands of GPUs to consumers
- Already having registrations (> 100's organizations)
- SaaS/PaaS Web Service based
- Stage Alpha(α) phase

Motivation

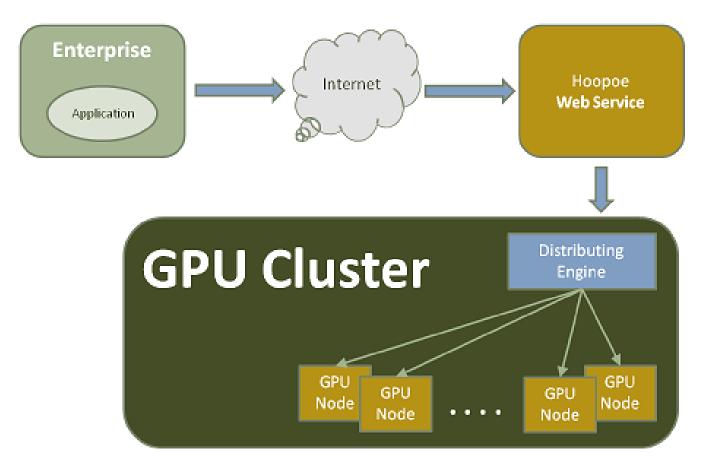
- Providing easier access to computing resources and well known libraries/algorithms
- Not an ordinary batch system (SGE, LSF, Condor)
- Provides real-time distribution performance
- Efficiently using GPU hardware in cluster environments
- Security & Virtualization Achieving better security by hiding the cluster from the user
- All cluster management and orchestration are performed by a the Hoopoe infrastructure

Service Highlights

- <u>Computing</u> Access GPU resources for computing or graphics tasks ("Hoopoe")
 - CUDA[™] NVIDIA C language, intuitive


- OpenCL[™] new standard, compatible across vendors
- Additional Apps FFT, BLAS, OpenCV and more...
- Storage Host data for computing
 - "HoopoeFS" an internal storage service

- C. C.
- Can also connect with *Amazon S3* for extended storage support, or integrate with EC2
- Can integrate with any technology (.NET, Java ...)


New Hoopoe[™] Service

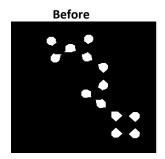
- **Encodeo™** video transcoding services
- Self developed library and service
- Accelerated video transcoding to HD standards and beyond (x10 + speedup)
- Adapt original video to multiple devices or convert between video codecs/formats
- Pay-per-use = 1/10 the time, 1/10 the price
- Available for media content providers
- Web service based

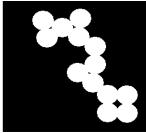
System Overview

Virtualization

- A key feature of cloud environments, yet missing for GPUs
- Not like with general cloud computing (time sharing of CPU)
- We provide the virtualization level on top of the GPU
- Based on user supplied details
- Achieving finer-grained parallelism and better resource utilization

Security

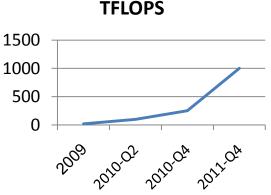

- A problem with all cloud systems where data enters the public domain (Internet)
- In Hoopoe the user has no direct access to the cluster
- Our code manages resources and computing
- The user only runs code inside the GPU
- The GPU is passive, with a special architecture not harmful
- Every user has isolated storage & execution environment
- Actions audit is provided to track activities



Example applications

- Image processing
- Finance

After



- Seismic analysis/processing
- AOI (e.g. wafer inspection)
- Digital printing
- Other simulations (biology, physics, chemistry and more)

Plans for the future

 Extending total computing power (reaching 1 PetaFLOPS around 2011)

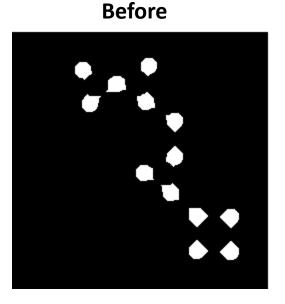
- Extending available Apps and libraries (Finance, simulations etc.)
- Provide Map-Reduce capabilities
- Integrate with more cloud services (Azure)
- Deploy Hoopoe in private clusters

Examples

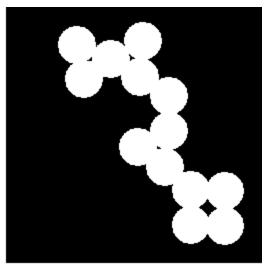
- 1. Submitting an FFT task
 - Using the web
 - Programmatically
- 2. A custom algorithm Image Erode

Web FFT example

- Submitting an FFT task using the web
- Process:
 - 1. Login
 - 2. Define FFT task parameters and metadata
 - 3. Click "<u>Submit</u>"
- Wait for results and notification in the email


FFT program example

- Integrating with Hoopoe Apps interface
- A simple .NET application
- Defining FFT parameters
- Submitting the task

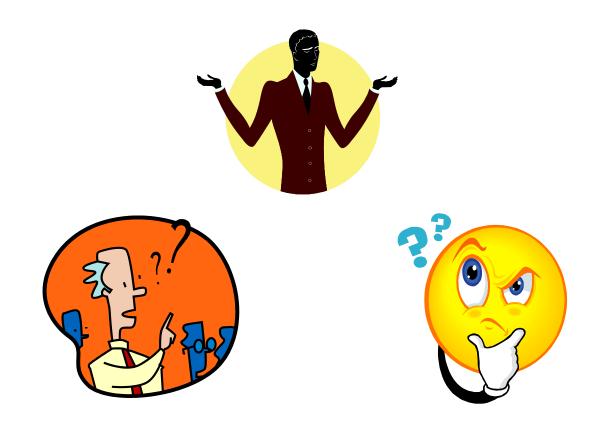


Erode example

- Submitting a custom algorithm to Hoopoe
- Used for image processing operations
- Image: 1280x1024, 32 bit

After

2009 (c) All rights reserved



Summary

- GPU's are a mature platform for computing purposes
- Outperforms existing solutions by: Price, performance, easy of use / integration
- Hoopoe[™] is our vision for how computing should be
- GPU based cloud services are just beginning!
- Contact us for more details

Questions

2009 (c) All rights reserved