

GPGPU, 8th Meeting

Mordechai Butrashvily, CEO

moti@gass-ltd.co.il

GASS Company for Advanced Supercomputing Solutions

- 6th meeting
- 7th meeting
- Future meetings
- Activities

- jCUDA library for accelerating Java applications
- Presenting various library functionalities
- Examples
- Questions

- Applications and ideas for problems that can be solved using the GPU
 - Classification
 - Medical imaging
 - Image compression
 - Robotics
- Presented by Dr. Boaz Ben-Moshe, Ariel University Center

- Hoopoe GPU cloud solution and architecture
- Building a GPU cluster a recipe
- OpenCL standard
- More advanced topics
- Looking for ideas ③

- Basis for a platform to exchange knowledge, ideas and information
- Cooperation and collaborations between parties in the Israeli industry
- Representing parties against commercial and international companies
- Training, courses and meetings with leading companies

NVPP **NV**IDIA **P**erformance **P**rimitives

- Introduction to NVPP
- Target audience & users
- Features
- Known limitations
- Future work
- Examples

- Software library providing access to image processing functions (OpenCV +)
- Based on CUDA
- Works on NVIDIA hardware
- Following Intel IPP, but with focused on image/video functions
- API based on C

- Developers & researchers looking to accelerate image & video processing
- Former background with IPP is not required (but always an advantage)

- Covers most common operators (Add, Sub, Mul etc.)
- Supports relevant data types
- Image channels from 1 to 4 per pixel
- Library is self contained (no need for further integration)

- For per pixel and per channel:
 - 8 bit Integer (Un/Signed \rightarrow Byte)
 - 16 bit Integer (Un/Signed \rightarrow Short)
 - 32 bit Integer (Un/Signed \rightarrow Int)
 - 32 bit float
 - 64 bit double

- Divided into 3 main categories:
 - 1. **Core** general & memory management
 - ². "OpenCV" operators, morphology
 - Image processing advanced image functions (JPEG compression...)

- Library versions
- Underlying hardware details
- Image operations:
 - Allocate (based on image characteristics)
 - Free
 - Set
 - Сору

- Bit-depth conversion
- Copy with border
- Transpose
- Swap
- Operators:
 - Add
 - Sub
 - Mul
 - Div
- AbsDiff
- Threshold
- Compare
- Mean StdDev

- NormDiff
- Filters:
 - Linear
 - Dilate
 - Erode
 - Mask
- Mask sum
- Max/Median/Min
- Sum
- Resize
- Rotate
- Mirror
- Warping

- JPEG DCT, Quantization
- Level Shift
- Color conversion (YUV / RGB)
- Haar
- Canny edges
- Histograms
- LUT

Image processing

- Functions support 8-bit, 16-bit integers or 32bit float
- Image dimensions are sometimes limited to 8k x 8k in size

- Supporting more data types
- Extending set of implemented algorithms
- Looking for your requests and needs!

- Image transforms:
 - Resize
 - Rotate
 - Transpose
- Histogram

- Source image: 512 x 512 (32 bit)
- Destination image: 1024 x 768 (32 bit)

- Source image: 512 x 512 (32 bit)
- Angle: 90°, 135°

Before

• Source image: 512 x 512 (32 bit)

The Israeli Association²⁴ of Grid Technologies (IGT)

- NVPP provides a fair amount of algorithms for image / video processing on the GPU
- Performance improvements depend on correct usage
- High potential for integrating into existing infrastructures
- Straight-forward API
- Can integrate with graphics API! (OpenGL/ DX)

