

GPGPU, 4th Meeting

Mordechai Butrashvily, CEO

moti@gass-ltd.co.il

GASS Company for Advanced Supercomputing Solutions

- 3rd meeting
- 4th meeting
- Future meetings
- Activities

ThAll rights reserved (c) ciation of G2008 - Mordechailogies (IGT)

- Dr. Avi Mendelson presented Intel "Larrabee" architecture
- Covered hardware details and design information

of G2008 - Mordechailogies (IGT)

- GPU computing with AMD (ATI)
- StreamComputing programming
- CAL.NET
- FireStream platform
- GPGPU for IT
- Questions

of G2008 - Mordechailogies (IGT)

- Software stacks and frameworks by NVIDIA and ATI:
 - \circ CUDA $\sqrt{}$
 - $_{\circ}$ StreamComputing \checkmark
- Upcoming OpenCL standard
- Developments and general talks about programming and hardware issues
- More advanced topics
- Looking for ideas ③

ThAll rights reserved (c) ciation of G2008 TMordechailogies (IGT)

- Basis for a platform to exchange knowledge, ideas and information
- Cooperation and collaborations between parties in the Israeli industry
- Representing parties against commercial and international companies
- Training, courses and meetings with leading companies

ThAll rights reserved (c) ciation of G2008 - Mordechailogies (IGT)

AMD Hardware

GPU Computing for programmers

	HD3870	HD4870	HD4870 X2	FirePro V8700	FireStream 9250
Core#	320	800	1600	800	800
Tflops	0.5	1.2	2.4	1.2	1.2
Core Freq.	775 Mhz	750 Mhz	750 Mhz	750 Mhz	750 Mhz
Memory	0.5 GB	1 GB	2 GB	1 GB	2 GB
Bandwidth	72 GB/s	115 GB/s	115 GB/s	108 GB/s	108 GB/s
Power	110 W	184 W	200 W	180 W	180 W
Price	150\$	300\$	550\$	2000\$	1000\$

Stream Processor

- For example, HD3870, 320 cores:
 - 4 SIMD engines
 - 16 thread processors each
 - 5 stream cores per thread

www.Grid.org.il

Figure 1.9 Simplified Block Diagram of the Stream Processor¹

- ATI formula
- 320 cores
- Each runs at 775 Mhz
- 1 MAD per cycle
- FLOPS = Cores * Freq. * FLOPS_CYCLE
- FLOPS = 320 * 775e6 * 2
- FLOPS = 496 GFLOPS

AMD software stack

GPU Computing for programmers

Software stack for GPU computing:

- CAL "Close to Metal"
- Allows direct communication with GPU hardware - without using graphics API
- Located on top of the "display" driver
- Very similar functionality as CUDA API
- History ATI was first to introduce a lowlevel interface to GPU

- Provides the runtime required to run "Stream" based solutions
- Supporting all GPUs starting from RV600 (Radeon HD2x00 series)

Includes:

- Brook+ compiler (*brcc*, an extension to Brook)
- C based syntax, can integrate into existing applications
- > Assembler for IL language
- Documentation
- Runtime library

- Supported platforms:
 - > Windows XP 32/64 bit
 - Windows Vista 32/64 bit
 - > Linux 32/64 bit

StreamComputing Programming

Syntax, capabilities etc.

- What is StreamComputing?
- Why is it good?
- What can be done with it?
- Summary of capabilities

- Can be considered as another shader language for GPUs
- Providing low level access to the hardware
- Without knowing graphics API (DX, GL)
- A framework that provides:
 - Development tools
 - Runtime
 - Defines a language

- Provides low level access to the GPU hardware
- Much faster than traditional Graphics API
- Language that is specific for computing, without graphics terms
- C/C++ based syntax
- Porting existing code isn't that difficult

- Mostly stream operations
- Using StreamComputing we can:
 - Allocate and transfer memory between a device and host
 - > Run specific "kernel"s (math computations)
 - Configure the amount of cores to utilize
 - Access DirectX and resources (texture data) during process

Short example

Matrix multiplication

١

kernel void simple_matmult(float Width, float A[][], float B[][], out float result<>)

```
// vPos - Position of the output matrix i.e. (x,y)
float2 vPos = indexof(result).xy;
// index - coordinates of A & B from where the values are fetched
float4 index = float4(vPos.x, 0.0f, 0.0f, vPos.y);
// step - represents the step by which index is incremented
float4 step = float4(0.0f, 1.0f, 1.0f, 0.0f);
float accumulator = 0.0f;
float i0 = Width;
while(i0 > 0)
{
    // A[i][k] * B[k][j]
    accumulator += A[index.zw]*B[index.xy];
    index += step;
    i0 = i0 - 1.0f;
}
```

// Writing the result back to the buffer
result = accumulator;

CAL.NET

.NET library for CAL and StreamComputing

- A .NET library that provides access to AMD GPU hardware from:
 - Windows XP/Vista
 - ≻ Linux
- Manage devices, allocate memory, load and execute code

- OpenCL standard gains popularity
- Several providers for high level languages:
 - > CUDA.NET CUDA & NVIDIA
 - CAL.NET StreamComputing & AMD
- Providing a unified interface for GPU hardware for other technologies as well:
 - Java, C++, FORTRAN etc...

FireStream Platform

Hardware platform for GPU computing

- FireStream, another GPU card
- Current products
- Future products

- Not just
- Another class of GPU cards, between gaming (Radeon) and professional (FireGL)
- No screen output, meant for computations only
- The recommended solution for GPU computing!

- AMD was first to announce one year ago a card with double precision
- BUT, it provided 0.5 TFlops and costs 2000\$

	FireStream 9170
GPU#	1
Cores	320
Memory	1 GB
Performance	0.5 TFlops
Bandwidth	~75 GB/s
Price	2000\$

	FireStream 9250	
GPU#	1	
Cores	800	
Memory	2 GB	
Performance	1 TFlops	
Bandwidth	108 GB/s	
Price	~1000\$	

GPGPU for IT

GPU Computing in Organizations

- GPU computing solutions
- Implementing GPU environment
- IT services

- Like covered previously
 - FireStream 9250 single GPU in a workstation
 - > Or embed within a 1U server having PCIe

- Organization usually need to implement a large scale GPU solution
- What about maintenance? And other IT services...
- Training?...

- This issues are being solved nowadays as organizations start to think about GPU solutions
- At the end, these services will help:
 - Choose the correct hardware
 - Train your IT personnel
 - Know how to manage replacement
 - Monitor GPU as network resources
- The goal is to help executives have a solid ground for using GPUs in their solutions!

- Hybrid cluster solutions (Servers with integrated FireStream) by global vendors
- Support for systems with replacement parts available immediately

- GPU computing using AMD solutions is improving
- Providing both hardware and software
- Very cost-effective solutions compared to CPU and GRID

of G2008 - Mordechailogies (IGT)

